The Cohomology Rings of Regular Nilpotent Hessenberg Varieties in Lie Type A

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Decomposing Nilpotent Hessenberg Varieties over Classical Groups

Hessenberg varieties are a family of subvarieties of the flag variety, including the Springer fibers, the Peterson variety, and the entire flag variety itself. The seminal example arises from numerical analysis and consists, for a fixed linear operator M , of the full flags V1 ( V2 . . . ( Vn in GLn with MVi ⊆ Vi+1 for all i. In this paper, I show that all nilpotent Hessenberg varieties in type...

متن کامل

Unit Interval Orders and the Dot Action on the Cohomology of Regular Semisimple Hessenberg Varieties

Motivated by a 1993 conjecture of Stanley and Stembridge, Shareshian and Wachs conjectured that the characteristic map takes the dot action of the symmetric group on the cohomology of a regular semisimple Hessenberg variety to ωXG(t), where XG(t) is the chromatic quasisymmetric function of the incomparability graph G of the corresponding natural unit interval order, and ω is the usual involutio...

متن کامل

nilpotent quotients in finitely presented Lie rings †

A nilpotent quotient algorithm for finitely presented Lie rings over Z (LIENQ) is described. The paper studies the graded and non-graded cases separately. The algorithm computes the so-called nilpotent presentation for a finitely presented, nilpotent Lie ring. A nilpotent presentation consists of generators for the abelian group and the products expressed as linear combinations for pairs formed...

متن کامل

second cohomology of lie rings and the schur multiplier

‎‎we exhibit an explicit construction for the second cohomology group‎ ‎$h^2(l‎, ‎a)$ for a lie ring $l$ and a trivial $l$-module $a$‎. ‎we show how the elements of $h^2(l‎, ‎a)$ correspond one-to-one to the‎ ‎equivalence classes of central extensions of $l$ by $a$‎, ‎where $a$‎ ‎now is considered as an abelian lie ring‎. ‎for a finite lie‎ ‎ring $l$ we also show that $h^2(l‎, ‎c^*) cong m(l)$‎...

متن کامل

On the Structure of the Cohomology of Nilpotent Lie Algebras

The exterior algebra over the centre of a Lie algebra acts on the cohomology of the Lie algebra in a natural way. Focusing on nilpotent Lie algebras, we explore the module structure afforded by this action. We show that for all two-step nilpotent Lie algebras, this module structure is non-trivial, which partially answers a conjecture of Cairns and Jessup [4]. The presence of free submodules ind...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Mathematics Research Notices

سال: 2017

ISSN: 1073-7928,1687-0247

DOI: 10.1093/imrn/rnx275